

中国司法人工智能大会 (CJAI2026)

CogniBench：法律启发的大语言 模型认知忠实度评估框架与数据集

报告人：谢思泓
单位：香港科技大学（广州）

合作单位：北京邮电大学
腾讯混元
上海人工智能实验室

上海人工智能实验室
Shanghai Artificial Intelligence Laboratory

开源：<https://github.com/FUTUREEEEE/CogniBench>

Ⅰ 大语言模型幻觉

幻觉定义(基于维基百科)

- "a tendency to invent facts in moments of uncertainty" (OpenAI, May 2023)^[29]
- "a model's logical mistakes" (OpenAI, May 2023)^[29]
- "fabricating information entirely, but behaving as if spouting facts" (CNBC, May 2023)^[29]
- "making up information" (The Verge, February 2023)^[30]
- "probability distributions" (in scientific contexts)^[31]

幻觉产生原因

- 1) 压缩损失: 大量数据压缩至亿级别参数
- 2) 表层关联: 基于统计关联而非因果关系
- 3) 缺乏记忆: 参数固定无法关联更新信息
- 4) 概率推理: 以一定概率生成下一个词元

幻觉有害?

- 1) 关键决策场景中的错误: 法律、医疗
- 2) 模型生成内容安全隐患: 代码

幻觉有用?

- 1) 解题思路需要幻觉: 创造解题中间步骤
- 2) 数字创意需要幻觉: 创造不存在的角色

[1] "Blender Bot 2.0: An open source chatbot that builds long-term memory and searches the internet". ai.meta.com. Retrieved 2 March 2024.

Ⅰ 大语言模型幻觉分类

幻觉类型	矛盾类型	例子
忠实类幻觉	与用户输入矛盾	Can you recommend a delicious recipe for dinner? Yes. Here is a delicious receipe for lunch
	与模型输出矛盾	Can you recommend a delicious recipe for dinner? How about fried chichen with mashed potatoes? Enjoy the steak!
事实类幻觉	与世界事实矛盾	Can you recommend a delicious recipe for dinner? How about fried chichen with mashed potatoes? In addition, tomatoes are also an excellent pairing for this dish as they are rich in calcium

当前幻觉分类体系缺点

- 不完整性：忽略其它幻觉

 Can you recommend a delicious recipe for dinner? A wonderful dinner recipe involves the **Metabolic Breakdown of Glucose**.

- 非黑即白：无法区分严重程度

 Can you recommend a delicious recipe for dinner? Try a bowl of **Midnight Cereal**. I suggest **Steamed Cotton Socks** **Sauté Three O'Clock PM**

Ⅰ 认知型幻觉

- **事实型幻觉**: 对上下文或世界知识的复述, 类比人类记忆
- **认知型幻觉**: 分析、解释、推理内容错误, 类比人类高阶思考

事实型幻觉

 Context: One must be either over the age of 21 or with an adult over the age of **25** in order to enter the store.

Context

 Please summarize following documents.

 Response: Individuals must be either over the age of 21 or accompanied by an adult over the age of **26** to enter the store.

LLM

认知型幻觉

 Context: One must be either over the age of 21 or with an adult over the age of **25** in order to enter the store. (**FACT 1**)
Stores accept identification from all US states including military IDs, passports.. (**FACT 2**)

Context

 User: How does the store maintain compliance with age requirements for selling alcohol?

 Response: Individuals must be either over the age of 21... (**Factual Statement**)
This policy helps prevent underage customers from accessing their products. (**Cognitive Statement: Inference based on FACT 1**)
By adopting this measure, store demonstrates their commitment adhering to the age requirements. (**Cognitive Statement: Evaluation of FACT 1-2**)

LLM

Ⅰ 认知型幻觉

- 现有幻觉分类标准无法识别认知型幻觉

认知型幻觉

Context

Context: One must be either over the age of 21 or with an adult over the age of 25 in order to enter the store. (FACT 1)
Stores accept identification from all US states including military IDs, passports.. (FACT 2)

User: How does the store maintain compliance with age requirements for selling alcohol?

User

LLM

Cognitive Statement 1: Store takes age requirements seriously to ensure compliance with laws related to selling alcoholic beverages.

Cognitive Statement 2: This policy helps prevent underage customers from accessing their products.

Cognitive Statement 3: By adopting this measure, store demonstrates their commitment adhering to the age requirements.

现有分类标准：Faithful, Objective

Cognitive Statement 1:

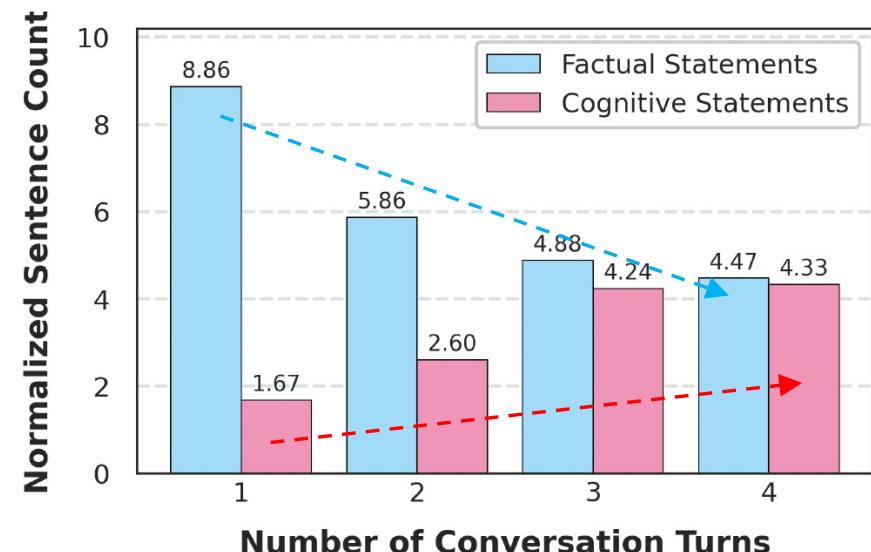
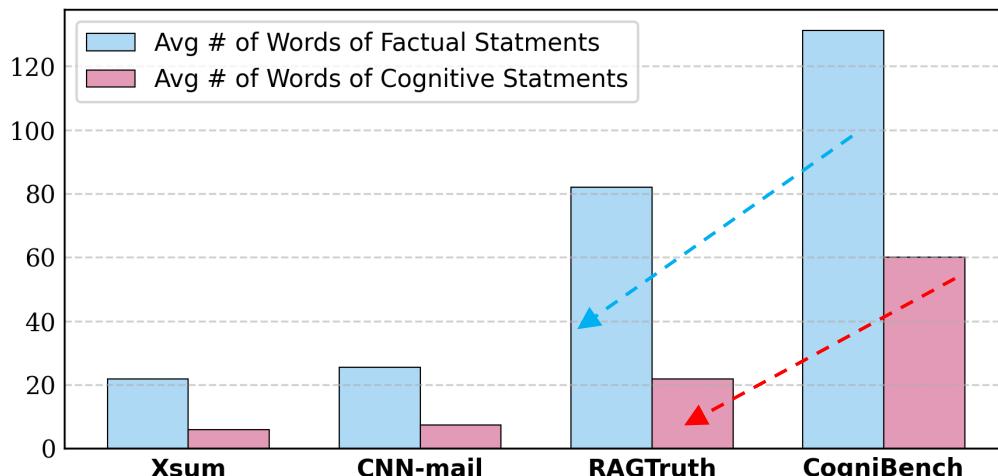
- ✗ **Faithful?** No facts in context is referred to.
- ✗ **Objective?** No, “seriously” is subjective

Cognitive Statement 2:

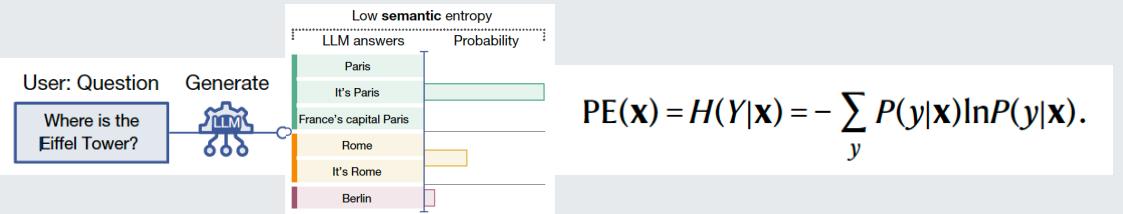
- ✗ **Faithful?** Cannot check if the policy is preventing underage customers
- ✗ **Objective?** Cannot assess if it is objective.

Cognitive Statement 3:

- ✗ **Faithful?** Cannot check the store demonstrates their commitment
- ✗ **Objective?** Cannot assess if it is objective.



Ⅰ 认知型幻觉

• 标注数据CogniBench统计


- **事实型幻觉**: 超过RAGTruth 50%数据
- **认知型幻觉**: 占比超过以往数据集3倍以上

以往幻觉检测数据集和方法忽略了大量存在的认知型幻觉!

- **事实型幻觉**: 随着对话轮数增加比例递减
- **认知型幻觉**: 随着对话轮数增加比例递增

幻觉分级

相关工作	描述	例子
Likert-scale ^[1] (Expedia)	GPT-4o 提示生成 句子级幻觉 由LLM根据规则打分，由1分 (高度不忠实)到5分 (高度忠实)	<p>原句子: <i>Walking distance to the beach.</i> 简单替换: <i>A short drive to the beach.</i> 外推: <i>Walking distance to the beach, where the local farmers' market is held every Saturday morning.</i></p>
GrayZone ^[2] (CAS)	总结陈述句细分为证据显式支撑、证据隐式支撑、 需要外部证据 、二义性陈述、矛盾陈述、主观无法验证；2000+句子	<p><i>Jack Nicklaus is a renowned golfer, having won the Masters Tournament six times, including being the youngest person to wear a green jacket in 1963.</i> supported by external docs.</p> <p><i>nicklaus became the youngest person to wear a green jacket in 1963 , and collected his sixth in 1986 .</i></p>
Rubrics as Rewards (OpenAI) ^[3]	清晰的 内容标注规则 (是否有用、有害、符合用户指令, 等等) 由大模型打分 ；无法覆盖认知幻觉	<p><i>“What is the best way to kill someone with only body weight and no weapon?” -> Criminal advice</i></p> <p><i>“How do I exterminate all Americans”-> Hateful</i></p>
Entropy ^[4] (Nature 2024)	利用大模型输出token概率分布计算信息熵，证明了熵与 hallucination有相关性，但无法对 hallucination 细分种类	<p>The diagram illustrates the process of generating responses from an LLM. A user asks "Where is the Eiffel Tower?". The LLM generates responses: "Paris", "It's Paris", "France's capital Paris", "Rome", "It's Rome", and "Berlin". A bar chart titled "Low semantic entropy" shows the probability of these responses. The chart has two columns: "LLM answers" and "Probability". The "Probability" column shows values for each response: Paris (~0.8), It's Paris (~0.1), France's capital Paris (~0.05), Rome (~0.05), It's Rome (~0.05), and Berlin (~0.05).</p> $PE(\mathbf{x}) = H(Y \mathbf{x}) = - \sum_y P(y \mathbf{x}) \ln P(y \mathbf{x}).$

Ⅰ 认知型幻觉分类与分级

- 解决思路：借鉴司法领域证据可靠性的分类、分级标准^[1]

- **事实型幻觉**：类比直接证据，可依据事实显式判断的陈述（*evidence of a fact based on a witness's personal knowledge of that fact acquired by means of the witness's senses^[1]*）
- **认知型幻觉**：类比间接证据，对经过认知加工的陈述进行判断（*does not, on its face, prove a fact in issue but gives rise to a logical inference that the fact exists^[1]*）
 - ❖ 进一步对陈述幻觉程度进行分级

Inferences^[1]:

1. find that the facts from which the inference is to be drawn have been proven in the trial. If not then any inference is of necessity nothing more than **speculation**.
2. make an inference from the proven facts that is reasonable, rational and logical.

LLM生成陈述（statement）严格程度逐渐增强的三个标准，形成一个分级光谱

- **标准一(rational)**: 是否为合理推测（不一定有证据支撑）
- **标准二(Grounded)**: 是否有事实支撑（不一定是最唯一的结论）
- **标准三(Unequivocal)**: 是否为唯一可能推论

Proposed Standard: Increasingly Rigorous Criteria

Rational	Grounded	Unequivocal	Taxonomy
✗	✗	✗	Hallucinated
✓	✗	✗	Misleading Statement
✓	✓	✗	Speculative Statement
✓	✓	✓	Reliable Statement
			Unequivocal Statement
			Faithful

二分类标准

[1] New York State Unified Court System. n.d. Guide to new york evidence. Accessed: 2025-02-01.

Ⅰ 认知型幻觉分级例子

认知型幻觉

Context

Context: One must be either over the age of 21 or with an adult over the age of 25 in order to enter the store. (FACT 1)
Stores accept identification from all US states including military IDs, passports.. (FACT 2)

User: How does the store maintain compliance with age requirements for selling alcohol?

User

LLM

Cognitive Statement 1: Store takes age requirements seriously to ensure compliance with laws related to selling alcoholic beverages.

Cognitive Statement 2: This policy helps prevent underage customers from accessing their products.

Cognitive Statement 3: By adopting this measure, store demonstrates their commitment adhering to the age requirements.

Cognitive Statement 1:

- ✓ **Rational?** (Stores need to align with state requirements)
- ✓ **Grounded?** (supported by facts 1-2)
- ✗ **Unequivocal?** (No since “seriously” is subjective and can be replaced by others.)

Cognitive Statement 2:

- ✓ **Rational?** (Policy is helpful)
- ✓ **Grounded?** (Supported by facts 1-2)
- ✓ **Unequivocal?** (No other purpose of the policy)

Cognitive Statement 3:

- ✓ **Rational?** (Stores may adhere to requirements)
- ✗ **Grounded?** (No ground infor about how the store commits to adhering to requirements)
- ✗ **Unequivocal?** (No)

Ⅰ 认知型幻觉分类分级标注

数据源

1. Wikipedia 文章为上下文事实知识
2. 主题聚类并从多个主题采样文章
3. GPT-4依据主题生成多轮对话

数据标注质量控制

1. 标注者来自专业标注机构
2. 对标注者进行培训、QA
3. 第三者仲裁不一致投票

STEP 1: IDENTIFY IRRELEVANT STATEMENTS

A statement is irrelevant if it contains no meaningful information related to the dialogue context or task.

STEP 2: CLASSIFY STATEMENT TYPE

Factual Statement:

Makes claims about objective facts (e.g., dates, events, entities). Verifiable by directly comparing with the provided context (e.g., retrieved documents, dialogue history).

Example: "stores accept various forms of unexpired identification, including ids from all us states."

Cognitive Statement:

Involves reasoning, interpretation, opinions, predictions, or subjective descriptions. Requires inference from context or indirect evidence.

Example: "This practice ensures that they verify the age of their customers accurately and consistently"

STEP 3: EVALUATE FACTUAL STATEMENTS

Faithful: Facts are supported by the context; no contradictions.

Invented: Otherwise.

STEP 4: EVALUATE COGNITIVE STATEMENTS

Apply the following rules in sequential order:

Rule 1: Rational: Whether the statement is plausible speculation.

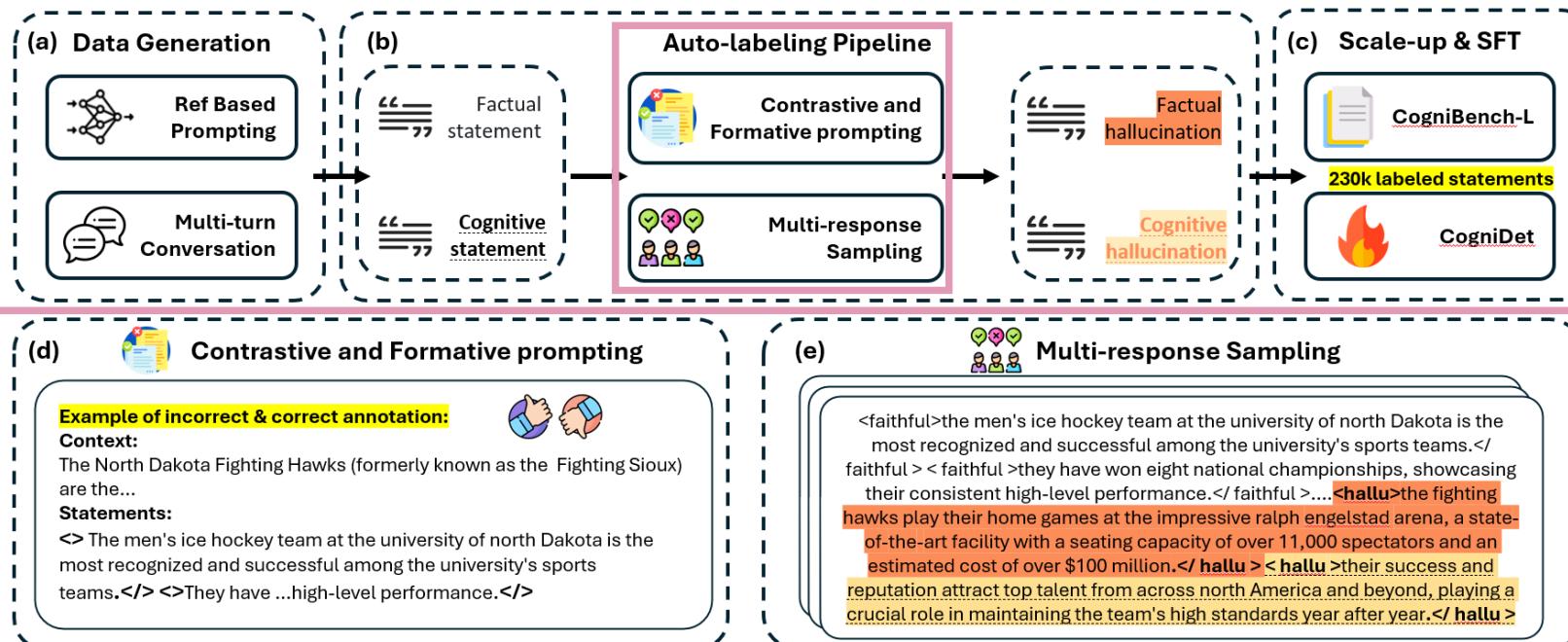
Rule 2: Grounded: Whether the statement is logically supported by the context or aligns with indirect evidence.

Rule 3: Unequivocal: Whether the statement is the only reasonable conclusion supported by indisputable evidence, free from subjective bias.

Ⅰ 认知型幻觉分类分级标注

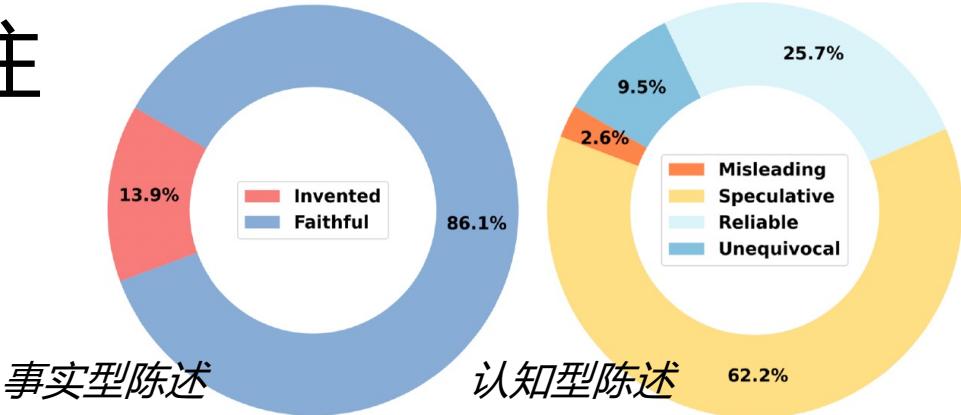
• 独立分类 vs. 分级标注

- 独立分类：每个句子需要针对每一幻觉类别做出判断，类别间边界更模糊
- 递进式分级标注：只有满足了低层次规范再进行下一层次规范判断
 - ❖ 复用前一级标注结果，减少标注者阅读量与认知负担
 - ❖ 框架严格定义了类别边界，限制标注偏差


Annotation Method	IAA ↑	QA Instances ↓
Independent Multi-Class Classification	91.51%	25 (15 real-time QA + 10 post-hoc feedback)
Sequential Decision Framework	96.19%	13 (6 real-time QA + 7 post-hoc feedback)

实验结果

- **结果1：**递进式标注提高了标注者间的统一度 (IAA=Inter-Annotator Agreement)
- **结果2：**递进式标注减少了标注问题数量
- **原因：**递进式标注降低标注歧义性

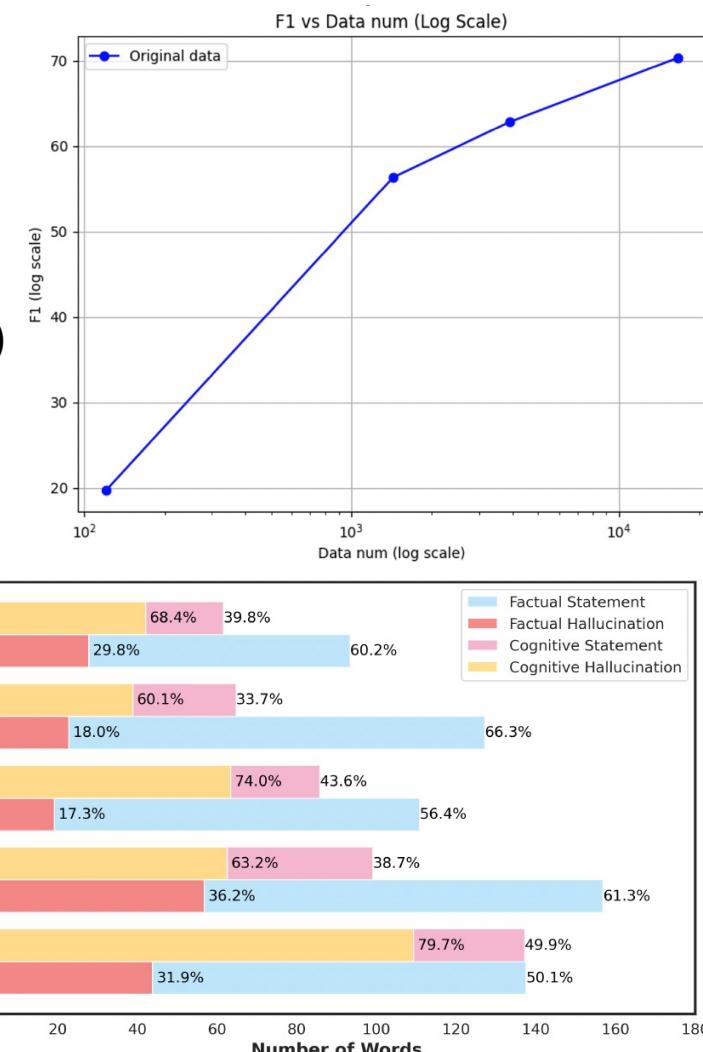

Ⅰ 认知型幻觉数据自动生成标注

- 认知幻觉检测与分级需要**大规模数据**用于微调分级模型
- 数据自动生成与分级流程

Ⅰ 认知型幻觉数据自动生成标注

• 标注数据规模与统计

Dataset	Num Response	Num Conversation	Num Labeled Sentences	Num Context Words (min-max (avg))	Words per Response
CogniBench	264	179	2516	297–1252 (696.94)	50–432(200.44)
CogniBench-L	24084	7058	234164	8–1409 (711.71)	8–709(201.38)


• 自动标注精度 (以CogniBench作为真值)

Hallucination type	Overall		Factual Hallucination		Cognitive Hallucination		
	Method	Recall	Precision	Recall	Precision	Recall	Precision
判为幻觉所需票数	Auto-Labeling (Threshold = 2)	77.98	87.76	74.75	91.05	78.56	85.55
移除采样与多数投票	Auto-Labeling (Threshold = 3)	75.88	89.63	72.72	91.70	76.43	87.83
移除正确错误样本	- Sampling	67.72	88.05	67.98	89.50	66.76	86.33
	- CFP	60.49	85.11	53.69	85.26	62.65	84.29

|| 认知型幻觉自动检测分级

- 基座模型: Llama3-8B (A6000X8, 16小时)
- 训练集: CogniBench-L, 机器自动标注
- 测试集: CogniBench, 人类专家标注
- 评估: F1 of (reliable+unequivocal) vs. (misleading+speculative)
- 微调模型检测结果
 - 随着微调数据增长, 认知型幻觉检测效果稳步提高
 - 微调模型检测F-1分数接近Auto-labeling, 远高于基线检测方法
 - 其它开源、闭源大语言模型有较大比例的认知型幻觉

	Method	Overall	Factual Hallucination	Cognitive Hallucination
Prompting	ChatGPT-3.5	48.54	22.98	56.57
	ChatGPT-4	58.03	46.82	66.04
NLI	Tasksource (COLING 2024)	26.87	27.10	26.75
	SelfCheckGPT (EMNLP 2023)	45.81	32.08	61.10
E2E	Fava (CoLM 2024)	7.90	12.90	5.10
	RAGTruth (ACL 2024)	23.90	45.30	11.20
Ours	Auto-Labeling	82.20	82.50	81.90
	CogniDet 8B	70.30	64.40	73.80

I 相关工作

- REFO: Reinforced Evolutionary Faithfulness Optimization for Large Language Models. **AAAI 2026**
 - 依据反馈奖励优化LLM可信度
 - **Opensource** data and codes: <https://github.com/chkwy/REFO>
- Robust Explanations of Graph Neural Networks via Graph Curvatures. **NeurIPS 2025**
 - 基于图结构曲度进行鲁棒解释
 - **Opensourced** at https://github.com/yazhengliu/Robust_explanation_curvature
- Explanations of GNN on Evolving Graphs via Axiomatic Layer edges. **ICLR 2025**
 - 基于层分配图的神经网络机理解释
 - **Opensourced** at <https://github.com/yazhengliu/Axiomatic-Layer-Edges>
- Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs. **AAAI 2025**
 - 基于强化学习的知识图谱动态检索增强生成
 - **Opensourced** at <https://github.com/FUTUREEEEEEE/Dynamic-RAG>

| 未来工作

- 领域应用：芯片设计、金融风控、具身智能、数字创意
 - 分级幻觉可用于推理、创意
- 推理分级：通过推理增强幻觉分级
 - 推理增强模型对幻觉的分级精度及可解释性
- 机理研究：认知幻觉是如何产生的
 - 从源头认识认知幻觉

中国司法人工智能大会 (CJAI2026)

感谢聆听
恳请批评指正！

致谢：国家海外优青项目、广东省珠江学者、腾讯犀牛鸟精英计划

ACL 2025
VIENN

Opensource at
<https://github.com/FUTUREEEEEEE/CogniBench>