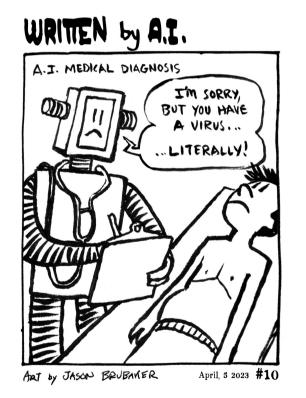


Reliable machine learning

When applying AI to clinical medicine



Do you trust the AI medical diagnosis?

What makes you feel better

- Explanation
- Stability
- Confidence

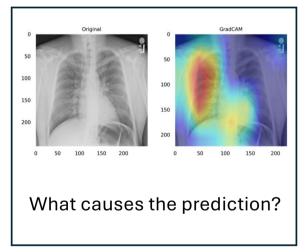
2024/12/1

Reliable machine learning

Make ML reliable to humans

What makes you feel better about AI prediction

Explainability

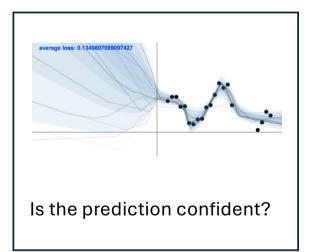


+ = classified as Stop Sign

Robustness

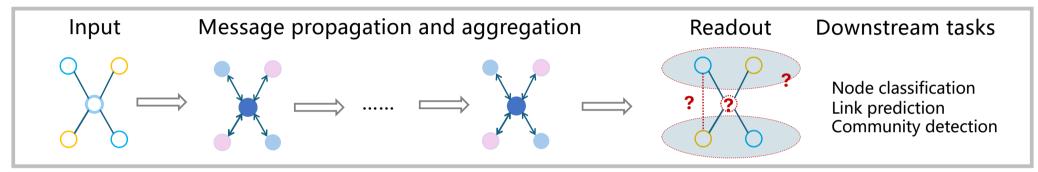
Prediction stable to noise?

Confidence

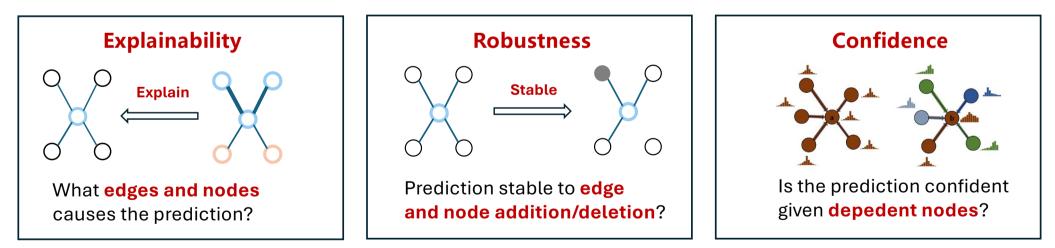


Reliable learning on graph

Graph learning pipeline



Reliale learning on graph



Framework of reliable graph learning

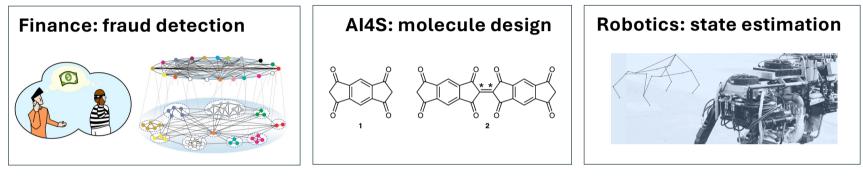
THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

Game on graphKDD'20ICDM'21bNeurIPS'24bTopology constraintMultple players Markov Game & RLSiamese network Self-supervised Constrained optimizationMultiple attackers and strategies • attacking action only • Inverse RLDependent uncertaintySurvey Graph uncertainty sources, representation, handling.NeurIPS'24c • NeurIPS'24c • Uncertainty propagation • Convergence & bias-var decomp.NeurIPS'24b	Discrete space Multi-objective Topology-aware Dynamic	Explainability	 ICDM'19 Scalability of explanation search Cycle handling Multiple explanations 	 ICDM'21a Topological importance Multi-objective explanation User-study 	 ICLR'23 Dynamic graph explanation Manifold of explanations Convex optimization 	 NeurIPS'24a Stable explanations Ranking-based robustness metric Bounding for optimization
Dependent uncertainty Survey NeurIPS'24c • Graph uncertainty sources, representation, handling. • Uncertainty propagation • Onvergence & bias-var decomp.	Topology constraint	Robustness	 Multple players Markov Game & RL 	 Siamese network Self-supervised Constrained 	 Multiple attackers and strategies attacking action only 	
	· · · · · · · · · · · · · · · · · · ·	Confidence	 Graph uncertainty sources, representation, 	 Uncertainty propagation Convergence & 		

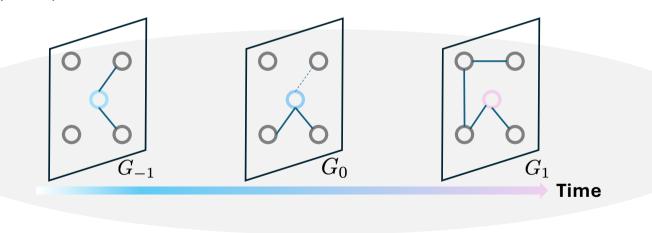
- Dynamic graph explanation (ICLR'23)
- Robust graph explanation (NeurIPS'24a)
- Learn about attacker on graph (NeurIPS'24b)
- Uncertainty quantification on graph (NeurIPS'24c)

Dynamic Graphs: background

• Graph G can be constantly changing on the **node/edge/attribute** levels.



• Predictions $\Pr(Y|G; \theta)$ on G changes too



Dynamic Graphs: modeling

 G_0 $G_{0.5}$ G_1 How a parametric model responses to graph O evolution? Node/edge changes are O insufficiently accurate. > What if changes are infinitesimal small? Time Manifold: manifolds are smooth mapping, and can reveal intrinsic properties (e.g., distance) of the data. **Advantages:** Node classification: After IsoMap Smooth manifold with c classes Fill in the gap . locally, $\Pr(Y|G; \boldsymbol{\theta})$ Differentiable . is on a (c-1)-dim Nonlinearity (via. manifold Fisher Information)

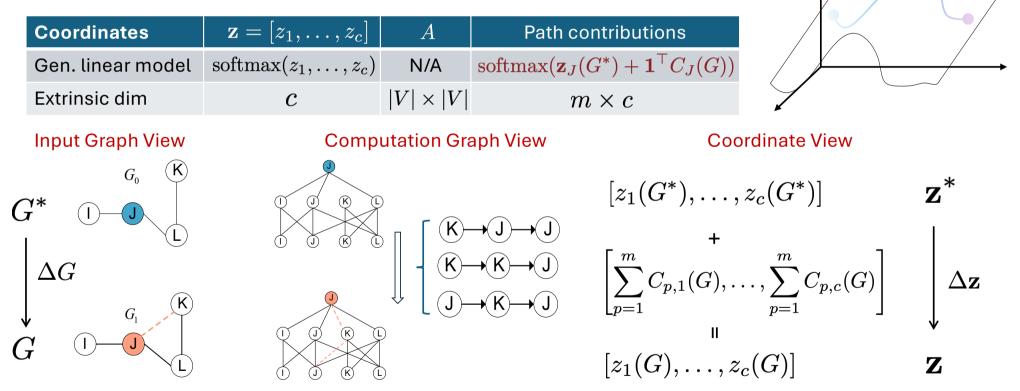
2024/12/1

٠

Dynamic Graphs: modeling

• Information geometry provides a manifold of exponential family.

 $\{\Pr(Y|G) = \operatorname{softmax}(z_1, \dots, z_c) : \mathbf{z} = \operatorname{logit}(G), \forall G\}$



2024/12/1

Relibale Learning on Graphs

10

Dynamic Graphs: modeling

Properties

• The logits and therefore the log-probability is differentiable with respect to the coordinate (path contributions). Define the Fisher Information Matrix $I(\mathbf{vec}(C_J(G_1))) = (\nabla_{\mathbf{vec}(C_J(G_1))} \mathbf{z}_J(G_1))^\top \mathbb{E}_{Y \sim \Pr(Y|G_1)} [s_{\mathbf{z}_J(G_1)} s_{\mathbf{z}_J(G_1)}^\top] (\nabla_{\mathbf{vec}(C_J(G_1))} \mathbf{z}_J(G_1))$

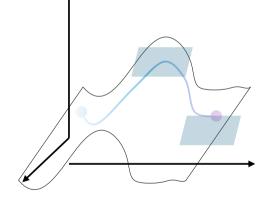
• The distance metric on the manifold is curved (non-Euclidean) and adaptive to the local curvature.

 $\operatorname{vec}(\Delta C_J(G_1,G_0))^{\top} I(\operatorname{vec}(C_J(G_1)))\operatorname{vec}(\Delta C_J(G_1,G_0))$

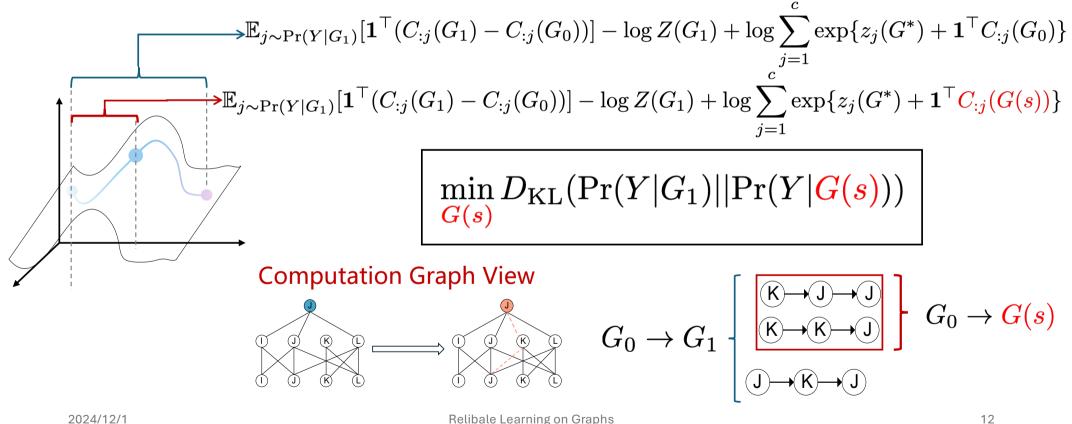
• Given $G_0 \rightarrow G_1$, define a curve on the manifold

 $\{\Pr(Y|G(s)): s \in [0,1], \Pr(Y|G(0)) = \Pr(Y|G_0), \Pr(Y|G(1)) = \Pr(Y|G_1)\}$

where $\Pr(Y|G(s))$ is differentiable w.r.t. the time variable $s \in [0, 1]$



The distance between two distributions is $D_{KL}(\Pr(Y|G_1)||\Pr(Y|G(s)))$



Relibale Learning on Graphs

Explanation evoluting graphs

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

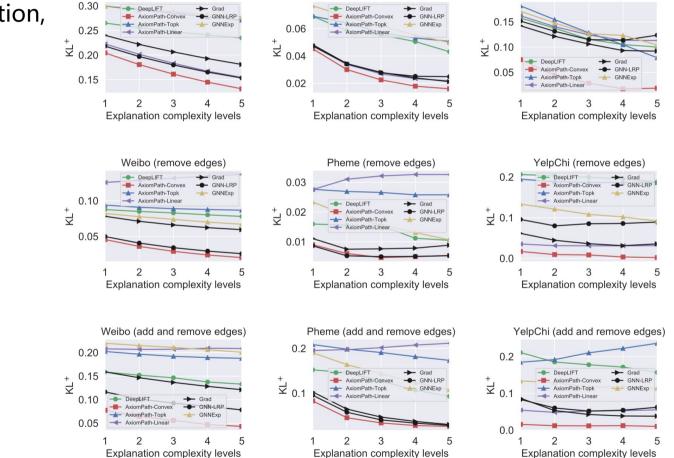
YelpChi (add edges)

Verified on node classification, link prediction, and graph classification tasks.

8 graph datasets.

Metric: explanation faithfulness (KL⁺) ↓

See the paper *A Differential Geometric View and Explainability of GNN on Evolving Graphs* (ICLR 2023) for more details.



Pheme (add edges)

2024/12/1

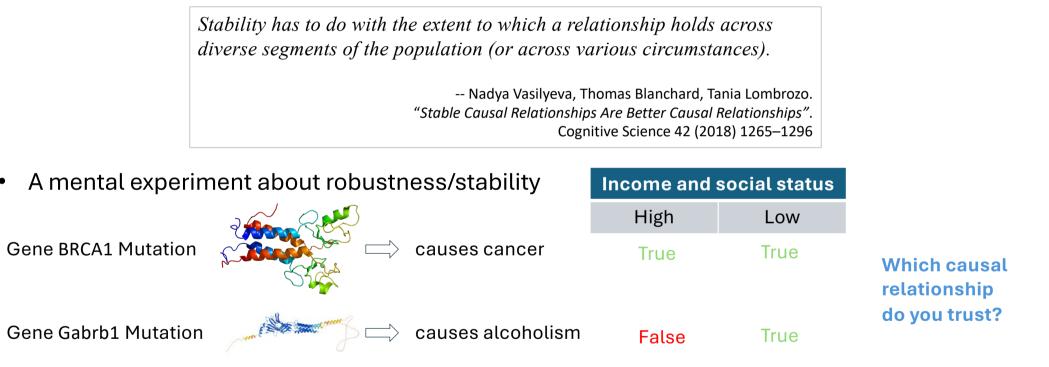
Relibale Learning on Graphs

Weibo (add edges)

- Dynamic graph explanation (ICLR'23)
- Robust graph explanation (NeurIPS'24a)
- Learn about attacker on graph (NeurIPS'24b)
- Uncertainty quantification on graph (NeurIPS'24c)

2024/12/1

• Robustness of explanations: an explanation won't change due to irrelevant perturbations.



• Many empirical studies: stable relationship under different background is trusted more.

2024/12/1

• Gradient-based explanation is sensitive to *irrelevant* perturbations?

Feature

Gender

House

•••

Deposits

Active cards

Education

Age

x'

Value

Female

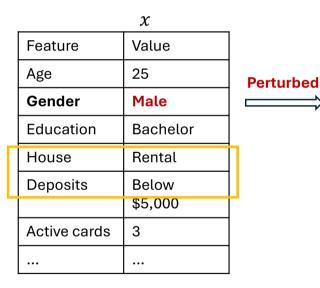
Master

Rental

Below

\$5,000

25



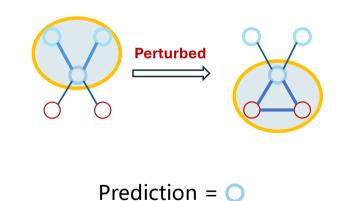
Credit card approval

	•
f(x'):	Rejected

3

...

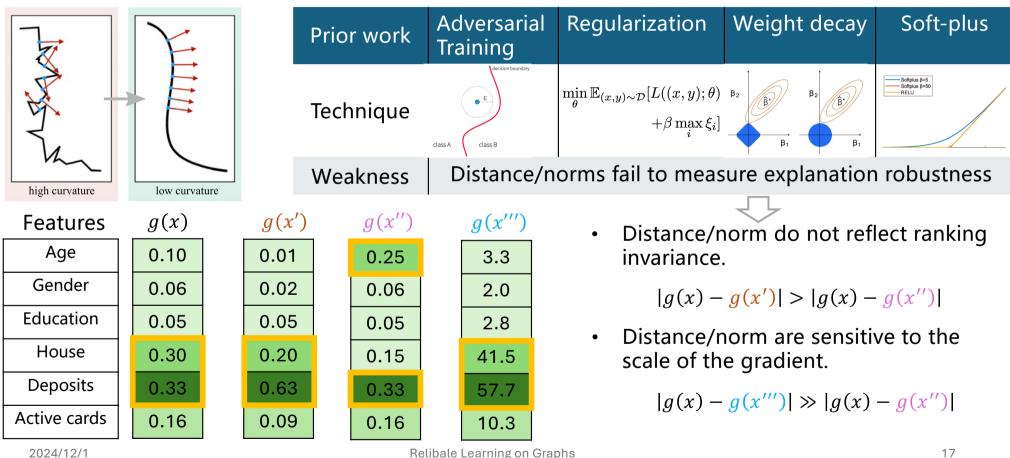
Node classification



f(x): Rejected

Robust explanation: existing work

Gradient-based explanations are vulnerable.



Relibale Learning on Graphs

Features	g(x)	 g(x')
Age	0.10	0.01
Gender	0.06	0.02
Education	0.05	0.05
House	0.30	0.20
Deposits	0.33	0.63
Active cards	0.16	0.09

Definition: the distance between the importance scores of features *i* and *j*

 $h(x, i, j) = g_i(x) - g_j(x)$

Example: deposits (*i*) is more indicative than Gender (*j*), then h(x, i, j) > 0

Invariant 1) the gap remains positive to perturbations

 $\int_0^1 h(x(t), i, j) \, dt > 0$

Invariant 2) and the gap remains positive for all input

$$\Theta(i,j) = \mathbb{E}_{x' \sim D}\left[\int_0^1 h(x(t),i,j) \, dt\right]$$

Focused on top k important features Top-k Thickness

$$\Theta(k) = \frac{1}{k(n-k)} \sum_{i=1}^{k} \sum_{j=k+1}^{n} \Theta(i,j)$$

2024/12/1

Relibale Learning on Graphs

18

Robust explanation: optimization

• Thickness is **bounded** by:

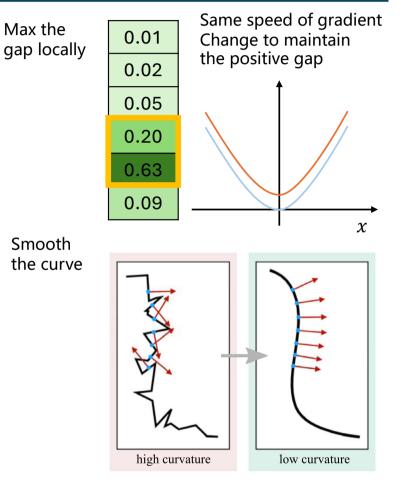
$$h(x,i,j) - \frac{\epsilon}{2} \left| H_i(x) - H_j(x) \right|_2 \le \Theta(i,j)$$

$$\le h(x,i,j) + \epsilon \left(L_i + L_j \right),$$

where $H_i(x)$ is the *i*-th row of the Hessian matrix, and $L_i = \max_{x' \in B(x,\epsilon)} |H_i(x')|_2$.

• <u>**R2ET</u>**: train a prediction model, while encouraging a larger gap and smaller Hessian norm.</u>

$$\min_{\theta} \mathcal{L}_{cls} - \lambda_1 \mathbb{E}_x \left[\sum_{i=1}^k \sum_{j=1}^n h(x, i, j) \right] + \lambda_2 \mathbb{E}_x |H(x)|_2$$



2024/12/1

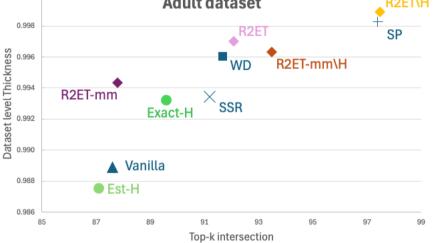
• Experimental results on image and graphs (with *many* features)

	Method	MNIST	CIFAR-10	ROCT	ADHD	BP
Maintaining <i>all</i> "important" features	# of features	28*28	32*32	771*514	6555	3240
on the top is difficult when the	Vanilla	59.0 / 64.0	66.5 / 68.3	71.9 / <u>77.7</u>	45.5 / 81.1	69.4 / 88.9
explanation functions are not smooth.	WD	59.1 / 64.8	64.2 / 65.6	77.2/68.9	47.6/79.4	69.4 / 88.6
	SP Est-H	62.9 / 66.9 85.2 / 90.2	67.2 / 71.9 77.1 / 78.7	73.9 / 69.5 78.9 / 78.0 †	42.5 / 81.3 58.2 / 83.7	68.7 / 90.1 (75.0 / 91.4)*
Intuition: the ranking changes a lot,	Exact-H	- / -	- / -	- / -	-/-	-/-
	SSR AT	- / - 56.0 / 63.9	- / - 61.6 / 66.8	- / - 78.0 / 72.9	-/- 59.4/81.0	- / - 72.0 / 89.0
leading to many local optima.	$R2ET_{\setminus H}$	82.8 / 89.7	67.3 / 72.2	79.4 / 70.9	60.7 / 86.8	70.9 / 89.5
	R2ET-mm $_{H}$	81.6 / 89.7	<u>77.7</u> / 79.4 [†]	77.3 / 60.2	<u>64.2</u> / <u>88.8</u>	<u>72.4</u> / <u>91.0</u>
	R2ET	85.7 / <u>90.8</u>	75.0/77.4	<u>79.3</u> / 70.9	71.6 [†] / 91.3 [†]	71.5 / 89.9
	R2ET-mm	85.3 / 91.4	78.0 [†] / <u>79.1</u>	79.1 / 68.3	58.8 / 87.5	73.8 [†] / 91.1 [†]
		make r	0	easier (s	elated ter moothe	

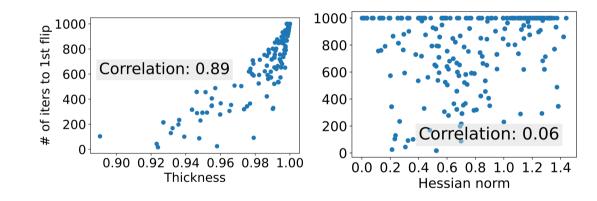
• Experimental results on tabular data (with *fewer* features)

	Method	Adult	Bank	COMPAS
Minimizing Hessian norm may be harmful.	# of features	28	18	16
	Vanilla	87.6 / 87.7	83.0 / 94.0	84.2 / 99.7
An experimental observations amollar	WD	91.7/91.8	82.4 / 85.9	87.7 / 99.4
An experimental observation: smaller	SP	<u>97.4</u> / <u>97.5</u>	95.4 / 95.5	99.5 [†] / 100.0
Hessian norm more likely to result in	Est-H	87.1 / 87.2	78.4 / 81.8	82.6/97.7
	Exact-H	89.6 / 89.7	81.9 / 85.6	77.2 / 96.0
smaller gradient magnitude (and gap).	SSR	91.2 / 92.6	76.3 / 84.5	82.1 / 97.2
	AT	68.4 / 91.4	80.0 / 88.4	84.2 / 90.5
	$R2ET_{\setminus H}$	97.5 / 97.7	100.0^\dagger / 100.0^\dagger	91.0/99.2
Broadening gaps only is good enough.	R2ET-mm $_{H}$	93.5 / 93.6	<u>95.8</u> / <u>98.2</u>	<u>95.3</u> / 97.2
	R2ET	92.1 / 92.7	80.4 / 90.5	92.0 / <u>99.9</u>
	R2ET-mm	87.8 / 87.9	75.1 / 85.4	82.1 / 98.4

• Thickness pinpoints the fundamental metric for explanation robustness.



- Each dot is a sample data
 - x-axis: thickness (*left*) or hessian norm (right).
 - y-axis: the number of iterations needed to manipulate any ranking.



Higher thickness leads to better robustness. R2ET does not have the highest thickness.

Compared with **Hessian norm**, **thickness** shows significantly closer relationship to explanation robustness.

See Training for Stable Explanation for Free (NeurIPS 2024) for more details.

2024/12/1

- Dynamic graph explanation (ICLR'23)
- Robust graph explanation (NeurIPS'24a)
- Learn about attackers on graph (NeurIPS'24b)
- Uncertainty quantification on graph (NeurIPS'24c)

Secure learning by learning the opponents

「知己知彼,百戰不殆;不知彼而知己,一勝一負;不知彼,不知己,每戰必殆。」 --《孫子兵法.謀攻篇》 Know yourself and your enemy, and you will be victorious in every battle. -- Sun Tzu's Art of War

The underlying strategy is a mixture and unknown to us

Observable trajectory data

An X Rumor in the Social Graph

X posts dicho el Abril 3. 2024 en a post on X: Video shows "an entire block of unfinished houses collapsed as a result of an earthquake in Taiwan."

High Ris	Styles & & Effect			
Peacemaker @peacemaket71 7,191 Following 19K Followers	2:10 AM · Apr 4, 2024 · 64.1K Views Q 125 125 12 5 Q 227 5 Q 227			
Medium F	Risk & Effect			
Jessie Czebotar 🤡 @CzebotarJessie	3:23 AM · Apr 4, 2024 · 6,626 Views			
968 Following 68.8K Follow	vers ♡ 58 🏹 3			
Low Risk & Effect				
Low Ris	k & Effect			
Low Ris	9:53 PM · Apr 4, 2024 · 220 Views			

Relibale Learning on Graphs

2024/12/1

Relibale Learning on Graphs



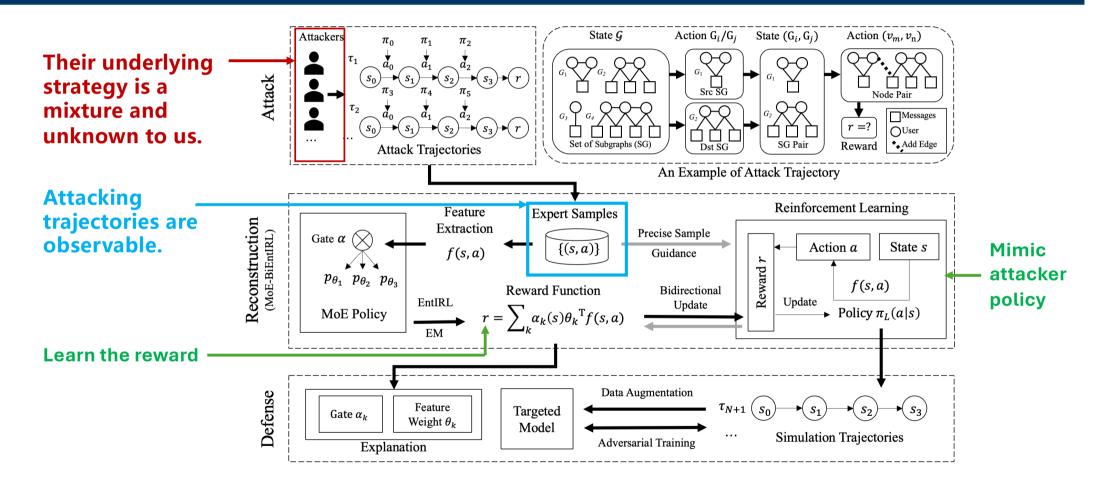
- ✓ Generate attacking samples for adversarial training;
- ✓ Help humans understand weaknesses of the algorithm.

RL is useful Membership Poisoning Attack Evasion Backdoor for graph security Inference G_0 G_1 5 trigger Technique Ο Cannot handle discrete attacking on graphs Weakness

Secure learning on graph

- Attackers know about and can edit the graph •
 - \checkmark Add reviews to a product;
 - ✓ Friend an account;
 - ✓ Create new accounts;
 - ✓ Modify account profile.
- Attacking a model

Framework



2024/12/1

Relibale Learning on Graphs

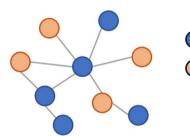
26

Details

IRL method	MaxEntIRL	ΜοΕ
Policy	$p(a s) = \frac{1}{Z} \exp(r_{\theta}(s, a)),$	$p(a^{(t)} s^{(t)},\theta) = \sum_{k=1}^{K} \alpha_k(s^{(t)},\varphi) p(a^{(t)} s^{(t)},\theta_k),$ $p(a^{(t)} s^{(t)},\theta_k) = \frac{\exp(\theta_k^{\top} f(s^{(t)},a^{(t)}))}{\sum_{a \in \mathcal{A}_{s,t}} \exp(\theta_k^{\top} f(s^{(t)},a))},$
Reward	$r_{\theta}(s,a) = \theta^{\top} f(s,a)$	$r_{ heta}(s,a) = \sum_{k=1}^{K} lpha_k(s) heta_k^ op f(s,a)$
Learning algorithm	$\max_{\theta} \sum_{s,a} \log p(a s,\theta)$	$ \hat{\gamma}_{jkt} = P(\gamma_{jkt} = 1 a_{j}^{(t)}, s_{j}^{(t)}, \theta^{(i)}) = \frac{\alpha_{k}(s_{j}^{(t)}) p\left(a_{j}^{(t)} s_{j}^{(t)}, \theta_{k}^{(i)}\right)}{\sum_{k=1}^{K} \alpha_{k}(s_{j}^{(t)}) p(a_{j}^{(t)} s_{j}^{(t)}, \theta_{k}^{(i)})} $ $ L_{gate}(\varphi) = \sum_{t=0}^{T-1} \sum_{k=1}^{K} \sum_{j=1}^{N} \hat{\gamma}_{jkt} \log \alpha_{k}(s_{j}^{(t)}), $ $ L_{atent variables} $ $ L_{ex}(\theta_{k}) = \sum_{t=0}^{T-1} \sum_{j=1}^{N} \hat{\gamma}_{jkt} \log p(a_{j}^{(t)} s_{j}^{(t)}, \theta_{k}). $ $ Halgorithm: $ $ Latent variables $ $ indicating which $ $ expert generates $ $ which action. $

Experiment results

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)



Training IRL

Testing resulting attacking π

• Trajectory generating methods

Expert Samples

	Inverse RL		High-Cost Attack			Low-Cost Attack		
	baselines	PRBCD	AdRumor	Mixture	PageRank	GC-RWCS	Mixture	
	Expert	4.865	4.877	-	3.000	3.000	-	
Weibo	Apprenticeship	1.275	0.788	0.704	0.850	0.763	1.071	
T=5	EntIRL	4.650	4.770	4.550	5.000	4.950	4.950	
	MoE-BiEntIRL	4.989	4.990	4.929	4.860	4.900	4.900	
	Expert	19.521	19.854	-	5.449	5.160	-	
Weibo	Apprenticeship	1.142	3.066	3.945	0.030	0.040	0.020	
T=20	EntIRL	19.030	19.749	19.199	19.830	20.000	20.000	
	<u>MoE-BiEntIRL</u>	19.876	19.936	19.979	19.970	19.700	18.749	
	Expert	4.804	5.947	-	2.991	3.990	-	
Pheme	Apprenticeship	1.788	3.387	2.619	0.000	0.000	0.000	
T=5	EntIRL	0.000	0.018	0.010	0.000	0.062	0.000	
	MoE-BiEntIRL	2.205	4.965	4.277	1.488	2.105	1.549	

 Table 1: Dataset statistics.

 Weibo
 Pheme

	12	
Nodes	10,280	2,708
Edges	16,412	4,401
Rumors	1,538	284
Non-rumors	1,849	859
Users	2,440	1,008
Comments	4,453	557

- Evaluation metric
 - increase in rumor detection error

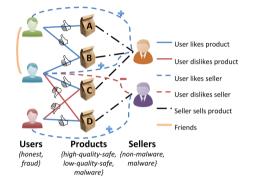
See "Enhancing Robustness of Graph Neural Networks on Social Media with Explainable Inverse Reinforcement Learning ", NeurIPS'24 for more details.

2024/12/1

- Dynamic graph explanation (ICLR'23)
- Robust graph explanation (NeurIPS'24a)
- Learn about attacker on graph (NeurIPS'24b)
- Uncertainty quantification on graph (NeurIPS'24c)

- Quantify the uncertainty of graph inference results can be useful.
 - Graph inference can be applied to link prediction, node classification, label denoising.

Social Network Modeling don't recommend a friend if the inferred mutual interest is not confident.



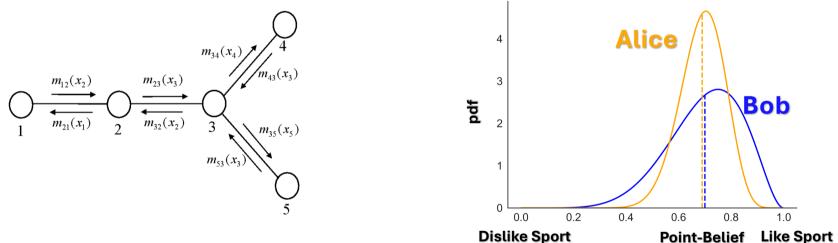
Fraud Detection^[1] suspicious users or sellers with high confidence should be filtered.

Crowdsourcing

ask for human labeling if the crowdsourcing workers are not confident in the annotation.

Github Homepage

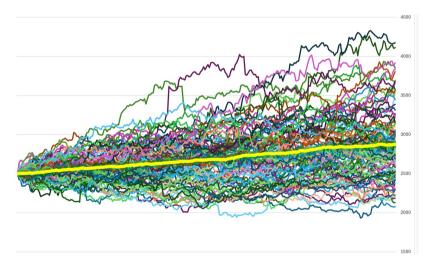
- Graphical model inference
 - Belief Propagation (BP) estimates the posterior probability of a node's classes.
 - BP only provides point estimates, failing to capture uncertainty in predictions.



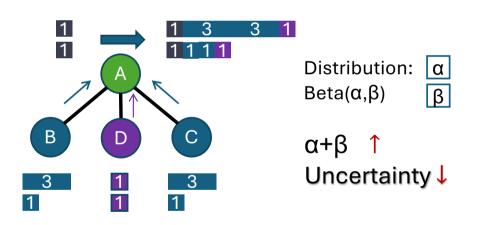
- Why there is uncertainty
 - o Imagine: the nodes prior is only a sample from a distribution.
 - $_{\odot}$ Sampling the priors multiple times can result in different poster distributions.

Existing work

- Monte Carlo sampling
 - Pros: Unbiased uncertainty estimates, general, easy to implement
 - Cons: Time-consuming for large-scale graphs, and no convergence guarantee.

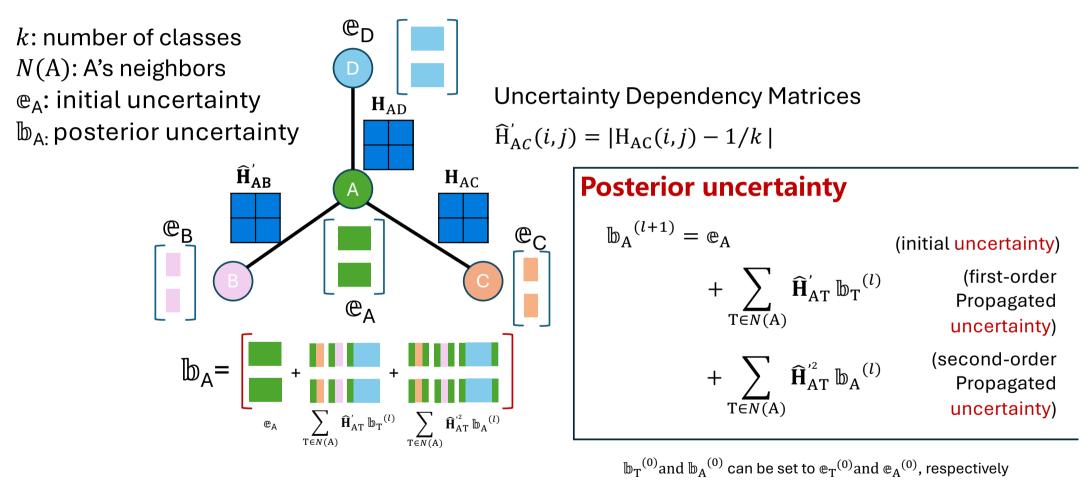


- Propagation of uncertainty
 - Pros: Bayesian point of view with rigorous proof, likely to converge.
 - Cons: make assumption about the dist. form (multi-nomial) and can be biased.



Can we have the best of both worlds?

Linear Uncertainty Propagation (LinUProp)



2024/12/1

Relibale Learning on Graphs

33

Theoretical properties

- Matrix form: $\operatorname{vec}(\mathbb{B}) = (\mathbf{I} (\Psi_1' + \operatorname{Diag}(\Psi_2'\mathbf{Q})))^{-1} \cdot \operatorname{vec}(\mathbb{E})$
- **Convergence**: LinUProp converges $\Leftrightarrow \rho(\mathbf{T}) < 1$
- Interpretability: $vec(\mathbb{B}) = (I + T + T^2 + ...) \cdot vec(\mathbb{E})$

 $c_{w \to v} = \mathbf{T}_{v,w} \operatorname{vec}(\mathbb{E})_w + (\mathbf{T}^2)_{v,w} \operatorname{vec}(\mathbb{E})_w + (\mathbf{T}^3)_{v,w} \operatorname{vec}(\mathbb{E})_w + \cdots$

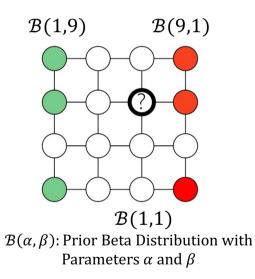
• Bias-variance decomposition: $\mathbb{E}\left[\left(h(\hat{\mathbf{E}}) - \operatorname{vec}(\hat{\mathbf{B}})_v\right)^2\right] = \underbrace{\left(h(\hat{\mathbf{E}}) - \mathbb{E}\left[\operatorname{vec}(\hat{\mathbf{B}})_v\right]\right)^2}_{(\text{Bias})^2} + \underbrace{\mathbb{E}\left[\left(\operatorname{vec}(\hat{\mathbf{B}})_v - \mathbb{E}\left[\operatorname{vec}(\hat{\mathbf{B}})_v\right]\right)^2\right]}_{\text{Variance}}$ True uncertainty uncertainty

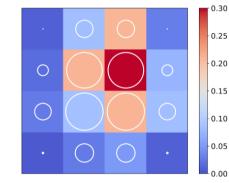
2024/12/1

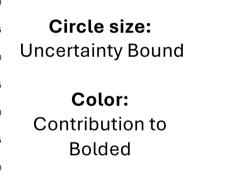
Toy example graph

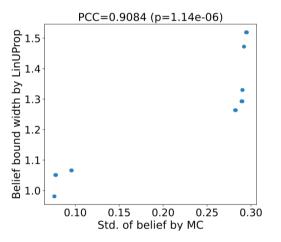
Inferred uncertainty

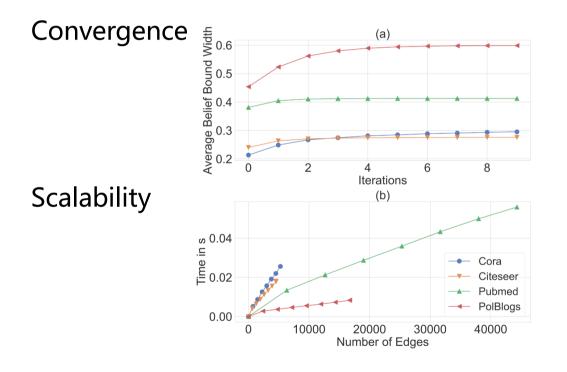
Correlation(LinUProp, MC)



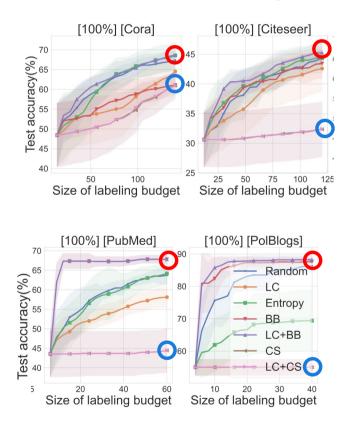








Active learning



2024/12/1

Relibale Learning on Graphs

Conclusions

Reliability = {Explainability, Robustness, Confidence, ...}.
 Graphs provide a research avenue with many problems.
 Dependencies make reliability harder to achieved.

• Future work

 $_{\odot}$ LLM and graph foundation model have more obstacles.

- Embodied AI that uses graph required reliability.
- o Multi-modality: graph+X

Thank you!