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ExRAIL (Exploratory Reliable AI Lab)



When applying AI to clinical medicine
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What makes you feel better

• Explanation

• Stability

• Confidence

Reliable machine learning

Do you trust the AI medical diagnosis?
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Reliable machine learning

Explainability Robustness Confidence

What causes the prediction? Prediction stable to noise? Is the prediction confident?

What makes you feel better about AI prediction

Make ML reliable to humans

-- ExRAIL



?
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Reliable learning on graph

……

ReadoutMessage propagation and aggregation Downstream tasks

?
? Node classification

Link prediction
Community detection

Input

Graph learning pipeline

Explainability Robustness Confidence

What edges and nodes
causes the prediction?

Prediction stable to edge
and node addition/deletion?

Is the prediction confident 
given depedent nodes?

Explain Stable

Reliale learning on graph
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Framework of reliable graph learning
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• Dynamic graph explanation (ICLR’23)

• Robust graph explanation (NeurIPS’24a)

• Learn about attacker on graph (NeurIPS’24b)

• Uncertainty quantification on graph (NeurIPS’24c)
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• Graph can be constantly changing on the node/edge/attribute levels.

Dynamic Graphs: background
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Robotics: state estimationFinance: fraud detection AI4S: molecule design

Time

• Predictions on changes too
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Dynamic Graphs: modeling

Time

Manifold: manifolds are smooth
mapping, and can reveal intrinsic
properties (e.g., distance) of the data.

• How a parametric model 
responses to graph 
evolution?
Ø Node/edge changes are

insufficiently accurate.
Ø What if changes are

infinitesimal small?

Advantages:
• Smooth manifold
• Fill in the gap
• Differentiable
• Nonlinearity (via.

Fisher Information)

Node classification:
with c classes
locally,
is on a (c-1)-dim
manifold



2024/12/1 Relibale Learning on Graphs 10

Dynamic Graphs: modeling

• Information geometry provides a manifold of exponential family.

Coordinates Path contributions

Gen. linear model N/A

Extrinsic dim
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Dynamic Graphs: modeling

• Given , define a curve on the manifold

where is differentiable w.r.t. the time variable

• The logits and therefore the log-probability is differentiable with respect to
the coordinate (path contributions). Define the Fisher Information Matrix

Properties

• The distance metric on the manifold is curved (non-Euclidean) and
adaptive to the local curvature.
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Explanation evoluting graphs

The distance between two distributions is

J

I LJ

I LJ K

K

J

I LJ

I LJ K

K

K J J

K K J

J K J

Computation Graph View
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Explanation evoluting graphs

Verified on node classification,
link prediction, and graph
classification tasks.

8 graph datasets.

Metric: explanation
faithfulness (KL+) ↓

See the paper
A Differential Geometric View and 
Explainability of GNN on Evolving 
Graphs (ICLR 2023)
for more details.



• Dynamic graph explanation (ICLR’23)

• Robust graph explanation (NeurIPS’24a)

• Learn about attacker on graph (NeurIPS’24b)

• Uncertainty quantification on graph (NeurIPS’24c)
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Robust explanation: motivation

• Robustness of explanations: an explanation won’t change due to irrelevant perturbations.

Stability has to do with the extent to which a relationship holds across 
diverse segments of the population (or across various circumstances). 

-- Nadya Vasilyeva, Thomas Blanchard, Tania Lombrozo.
“Stable Causal Relationships Are Better Causal Relationships”.

Cognitive Science 42 (2018) 1265–1296

• A mental experiment about robustness/stability

causes alcoholism

Gene BRCA1 Mutation

Gene Gabrb1 Mutation

causes cancer

Income and social status

High Low

True True

False True

Which causal
relationship
do you trust?

• Many empirical studies: stable relationship under different background is trusted more.
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Robust explanation: motivation

• Gradient-based explanation is sensitive to irrelevant perturbations?

Feature Value

Age 25

Gender Male

Education Bachelor

House Rental

Deposits Below 
$5,000

Active cards 3

… …

𝑓 𝑥 : Rejected

𝑥
Feature Value

Age 25

Gender Female

Education Master

House Rental

Deposits Below 
$5,000

Active cards 3

… …

𝑓 𝑥! : Rejected

𝑥!

Perturbed

Credit card approval

Perturbed

Prediction =

Node classification
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Robust explanation: existing work

Prior work Adversarial
Training

Regularization Weight decay Soft-plus

Technique

Weakness Distance/norms fail to measure explanation robustness

• Gradient-based explanations are vulnerable.

Age

Gender

Education

House

Deposits

Active cards

0.01

0.02

0.05

0.20

0.63

0.09

3.3

2.0

2.8

41.5

57.7

10.3

0.25

0.06

0.05

0.15

0.33

0.16

𝑔 𝑥 𝑔 𝑥′ 𝑔 𝑥′′ 𝑔 𝑥′′′
0.10

0.06

0.05

0.30

0.33

0.16

Features

𝑔 𝑥 − 𝑔 𝑥! > 𝑔 𝑥 − 𝑔 𝑥!!

• Distance/norm are sensitive to the
scale of the gradient.

• Distance/norm do not reflect ranking
invariance.

𝑔 𝑥 − 𝑔 𝑥!!! ≫ 𝑔 𝑥 − 𝑔 𝑥!!
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Robust explanation: a novel metric

0.01

0.02

0.05

0.20

0.63

0.09

𝑔 𝑥 𝑔 𝑥′
0.10

0.06

0.05

0.30

0.33

0.16

Definition: the distance between the importance scores
of features 𝑖	and 𝑗

ℎ 𝑥, 𝑖, 𝑗 = 𝑔! 𝑥 − 𝑔" 𝑥

Example: deposits (𝑖) is more indicative than Gender (𝑗),
then ℎ 𝑥, 𝑖, 𝑗 > 0

Age

Gender

Education

House

Deposits

Active cards

Features

Invariant 1) the gap remains positive to perturbations

(
"

#
ℎ 𝑥 𝑡 , 𝑖, 𝑗 	𝑑𝑡 > 0

Invariant 2) and the gap remains positive for all input

Θ(𝑖, 𝑗) = 𝔼$!∼& (
"

#
ℎ 𝑥 𝑡 , 𝑖, 𝑗 	𝑑𝑡

Θ 𝑘 =
1

𝑘 𝑛 − 𝑘
9
'(#

)

9
*()+#

,

Θ 𝑖, 𝑗

Focused on top 𝑘
important features
Top-𝑘 Thickness
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Robust explanation: optimization

• Thickness is bounded by:
ℎ 𝑥, 𝑖, 𝑗 −

𝜖
2
𝐻! 𝑥 − 𝐻" 𝑥 #

≤ Θ 𝑖, 𝑗

≤ ℎ 𝑥, 𝑖, 𝑗 + 𝜖 𝐿! + 𝐿" ,

where 𝐻! 𝑥  is the 𝑖-th row of the Hessian matrix, 
and 𝐿! = max

$-∈& $,(
𝐻! 𝑥′ #.

• R2ET: train a prediction model, while encouraging 
a larger gap and smaller Hessian norm.

min
:
ℒ;<= − 𝜆>𝔼? )

@

A

)
B

C

ℎ 𝑥, 𝑖, 𝑗 + 𝜆D𝔼?|𝐻 𝑥 |D

𝑥

Same speed of gradient
Change to maintain
the positive gap

0.01

0.02

0.05

0.20

0.63

0.09

Max the
gap locally

Smooth
the curve
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• Experimental results on image and graphs (with many features)

Maintaining all “important” features 
on the top is difficult when the
explanation functions are not smooth.

Intuition: the ranking changes a lot,
leading to many local optima.

Optimizing Hessian-related terms
make ranking easier (smoother) to
find better optima.

Experiments
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• Experimental results on tabular data (with fewer features)

Broadening gaps only is good enough.

Minimizing Hessian norm may be harmful.

An experimental observation: smaller 
Hessian norm more likely to result in 
smaller gradient magnitude (and gap).

Experiments
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Experiments

• Thickness pinpoints the fundamental metric for explanation robustness.
• Each dot is a sample data
• x-axis: thickness (left) or hessian norm (right).
• y-axis: the number of iterations needed to 

manipulate any ranking.

Why R2ET may not be the best?

Compared with Hessian norm, thickness shows 
significantly closer relationship to explanation robustness.

Higher thickness leads to better robustness.

R2ET does not have the highest thickness.

See Training for Stable Explanation for Free (NeurIPS 2024) for more details.



• Dynamic graph explanation (ICLR’23)

• Robust graph explanation (NeurIPS’24a)

• Learn about attackers on graph (NeurIPS’24b)

• Uncertainty quantification on graph (NeurIPS’24c)
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Secure learning by learning the opponents

「知⼰知彼，百戰不殆；不知彼⽽知⼰，⼀勝⼀負；不知彼，不知⼰，每戰必殆。」
--《孫⼦兵法. 謀攻篇》

Know yourself and your enemy, and you will be victorious in every battle.
-- Sun Tzu's Art of War

Post Repost

Post

A B

C

A A A
…

A

C C D C D E
User          
Rumor

An X Rumor in the Social Graph Attack Styles Attack Sequences

A

High Risk & Effect

Medium Risk & Effect

Low Risk & Effect

BB B B
…

A

B

C

The underlying strategy is a mixture and unknown to us Observable trajectory data



2024/12/1 Relibale Learning on Graphs 25

Secure learning on graph

• Attacking a model

Attack Poisoning Evasion Backdoor Membership
Inference

Technique

Weakness Cannot handle discrete attacking on graphs

• Attackers know about and can edit the graph
ü Add reviews to a product;
ü Friend an account;
ü Create new accounts;
ü Modify account profile.

• Knowledge about attackers
ü Generate attacking samples

for adversarial training;
ü Help humans understand

weaknesses of the algorithm.

trigger

RL is useful
for graph security
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Their underlying
strategy is a
mixture and
unknown to us.

Attacking
trajectories are
observable.

Learn the reward

Mimic
attacker
policy

Framework



2024/12/1 Relibale Learning on Graphs 27

Details

IRL method MaxEntIRL MoE

Policy

Reward

Learning
algorithm EM algorithm:

Latent variables
indicating which
expert generates
which action.
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Experiment results

• Evaluation metric
o increase in rumor

detection error

{ 𝑠, 𝑎 }

Expert Samples

• Trajectory generating methods

Inverse RL
baselines

Training IRL
Testing resulting attacking 𝜋

See “Enhancing Robustness of Graph Neural Networks on 
Social Media with Explainable Inverse Reinforcement Learning” , NeurIPS’24
for more details.



• Dynamic graph explanation (ICLR’23)

• Robust graph explanation (NeurIPS’24a)

• Learn about attacker on graph (NeurIPS’24b)

• Uncertainty quantification on graph (NeurIPS’24c)
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Uncertainty quantification on graphs

Social Network Modeling
don’t recommend a friend if
the inferred mutual interest
is not confident.

Fraud Detection[1]

suspicious users or sellers
with high confidence should
be filtered.

• Quantify the uncertainty of graph inference results can be useful.
o Graph inference can be applied to link prediction, node classification, label denoising.

Crowdsourcing
ask for human labeling if the
crowdsourcing workers are not
confident in the annotation.

Github 
Homepage
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• Graphical model inference
o Belief Propagation (BP) estimates the posterior probability of a node's classes.
o BP only provides point estimates, failing to capture uncertainty in predictions.

Alice

Bob

Like SportDislike Sport

pd
f

Point-Belief
• Why there is uncertainty 

o Imagine: the nodes prior is only a sample from a distribution.
o Sampling the priors multiple times can result in different poster distributions.

Uncertainty quantification on graphs
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Existing work

• Monte Carlo sampling
o Pros: Unbiased uncertainty estimates,

general, easy to implement
o Cons: Time-consuming for large-scale 

graphs, and no convergence guarantee.

• Propagation of uncertainty
o Pros: Bayesian point of view with

rigorous proof, likely to converge.
o Cons: make assumption about the dist.

form (multi-nomial) and can be biased.

α
β

Distribution:
Beta(α,β)

α+β ↑
Uncertainty ↓

A

B CD

3
1

3
1

1
1

1
1 1 111

11 3 3

Can we have the best of both worlds?
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𝑘: number of classes 
𝑁(A): A’s neighbors
𝕖A: initial uncertainty
𝕓A: posterior uncertainty

Uncertainty Dependency Matrices
"H&'’ (𝑖, 𝑗) = |H&)(𝑖, 𝑗) − ⁄1 𝑘 |
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(second-order
Propagated
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Theoretical properties
• Matrix form:

• Convergence:

• Interpretability:

• Bias–variance decomposition:
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Linear Uncertainty Propagation (LinUProp)

vec(𝔹) = (𝐈 − (𝚿7’ + Diag(𝚿8
’𝐐)))97? vec(𝔼)

𝐓

LinUProp	converges ⟺ ρ(𝐓) < 1

vec(𝔹) = (𝐈 + 𝐓 + 𝐓𝟐+. . . ) ] vec(𝔼)

True
uncertainty

LinUProp
uncertainty
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Experiments

？

ℬ(1,9) ℬ(9,1)

ℬ(1,1)
ℬ 𝛼, 𝛽 : Prior	Beta	Distribution	with	

Parameters	𝛼	and	𝛽	

Toy example graph

Circle size:
 Uncertainty Bound

Color:
Contribution to 

Bolded

Inferred uncertainty Correlation(LinUProp, MC)
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Convergence

Active learning

Scalability

Experiments
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Conclusions and future work

• Conclusions
oReliability = {Explainability, Robustness, Confidence, …}.
oGraphs provide a research avenue with many problems.
oDependencies make reliability harder to achieved.

• Future work
o LLM and graph foundation model have more obstacles.
o Embodied AI that uses graph required reliability.
oMulti-modality: graph+X

Thank you!


